

DESIGN AND SYNTHESIS OF A PYRIDONE-BASED PHOSPHOTYROSINE MIMETIC

Jian-Min Fu and Arlindo L. Castelhano*

Cadus Pharmaceutical Corporation, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, U.S.A.

Received 20 July 1998; accepted 1 September 1998

Abstract: A novel pyridone-based tyrosine analog, $\mathbf{6}$, has been designed to mimic the binding interaction of SH2 domains with phosphotyrosine (pTyr) containing peptides. Synthesis of $\mathbf{6}$ features a key Pd catalyzed coupling of β -iodoalanine with phosphonomethyl 4-pyridone triflate. © 1998 Elsevier Science Ltd. All rights reserved.

SH2 domains are phosphotyrosine-binding modules found in a variety of important signal-transducing molecules such as nonreceptor tyrosine kinases, phosphatases, and regulatory adapter proteins. Inhibitors that block SH2 domain binding have potential utility in a wide variety of therapeutic areas including metabolic diseases, cancer, inflammation and allergy. Our interest lies with the high affinity IgE receptor, FceRI, and associated tyrosine kinases and phosphatase PTP-1C. Aggregation of this receptor by antigenantibody complexes leads to the activation of Lyn and Syk with rapid phosphorylation of tyrosine residues in the β - and γ -chain cytoplasmic ITAM (immunoreceptor tyrosine-based activation motif) regions of the receptor. Association of the SH2 domain of syk with the phosphorylated γ -chain of FceRI in basophils and mast cells leads to downstream activation signals and the allergic response.

Structural detail provided from X-ray and NMR studies of high affinity pTyr containing peptides has guided the design of SH2-directed ligands.⁴ Selective ligands for SH2 domains containing pTyr or phosphate-resistant pTyr analogs and pseudo-peptidic elements, have been developed for SH2 domains of pp60^{c-src}, p85 subunit of PI-3 kinase, and other proteins.⁵ Ligand studies with (phosphonomethyl) phenylalanine (Pmp), wherein the phosphate ester oxygen (>COPO₃H₂) has been replaced by a methylene unit (>CH₂PO₃H₂) and Pmp analogs bearing fluorine or hydroxyl, indicate a pK_{A2} requirement (pTyr pK_{A2} = 5.7 vs. Pmp pK_{A2} = 7.1) and an H-bond to the phosphate ester oxygen.⁶ It occurred to us that the inductive effect of a heterocycle on phosphonate acidity (Het-CH₂PO₃H₂) would result in a pK_{A2} close to that of pTyr.⁷ As indicated in Figure 1, the pyridone methylphosphonate moiety was expected to maintain ionic and H-bonding interactions observed in phosphate-based ligands.⁸

$$\begin{array}{c} \text{Arg inition O} \\ \text{BB5} \\ \text{O} \\ \text{P} \\ \text{O} \\ \text{NH} \end{array} \qquad \begin{array}{c} \text{Ser } \text{BB7} \\ \text{E} \\ \text{RO P} \\ \text{NH} \\ \text{OTf} \\ \text{OTf} \\ \text{Ac-NH} \\ \text{OBn} \\ \text{Ac-NH} \\ \text{OBn} \\ \text{Ac-NH} \\ \text{OBn} \\ \text{OTf} \\ \text{OTF}$$

Figure 1. Modeled interactions with a SH2 domain and retrosynthesis of pyridone pTyr mimetic

The first approach in preparing the key pyridone pTyr mimetic began with commercial (4-pyridinyl)alanine. Since pyridine to pyridone conversion has been reported for simple systems, rearrangement of N^{α} -Boc-(4-pyridinyl-N-oxide)alanine benzyl ester to the corresponding (4-pyridone)alanine with acetic anhydride was investigated (Scheme 1). In the event, we established the presence of 5 in crude product by MS but the yield was low and pure material was elusive.

Boc,
$$\bigcap_{H = Bn}^{N}$$
 Boc, $\bigcap_{H = Bn}^{N^+}$ Boc, \bigcap

Scheme 1. (i) CsCO₃, DMF/H₂O, BnBr, 76% (ii) m-CPBA, CH₂Cl₂, 86% (iii) Ac₂O, 65°C, 2.5 h

Alternatively, the palladium catalyzed cross coupling of triflate 2, already possessing the phosphonate moiety, and β -iodoalanine 3 appeared to be a feasible, convergent synthesis of 6^{10} (Scheme 2). Starting with commercial 4-(O-benzyl)pyridone, alkylation with BrCH₂P(O)(O'Pr)₂ and K₂CO₃ in acetonitrile at reflux gave N-alkylated product in 98% yield. The benzyl group of the phosphonomethylpyridone intermediate was then removed by hydrogenolysis in 96% isolated yield. The triflate moiety was introduced with triflic anhydride and triethylamine at -78 °C for 5 min in 70% isolated yield, longer reaction time led to lower yields of triflate product. Palladium catalyzed coupling of 2 with the zinc reagent of β -iodoalanine, prepared according to Jung, ¹¹ Pd₂(dba)₃/o-tol₃P at 55 °C, provided the desired product 6 reproducibly in 43% yield.

Assembly of a pyridone-based ligand with recognition for SH2 domains involved the additional condensation of 6 with the peptidomimetic 7, an entity developed for the P+1 to P+3 pockets, ¹² and N^α-acetylation of the N-terminus. Thus, treatment of 6 with TFA and acetylation with acetic anhydride proceeded in 76% yield for the two-step transformation to give 9. Hydrogenolysis with H₂/Pd(OH)₂/EtOAc gave the carboxylic acid 10 in 94% yield. Coupling of 10 with ValAla dibutyl amide 7, afforded 11 as a single isomer revealing stereochemical integrity in the palladium coupling step. Unmasking of the phosphonate isopropyl esters with typical conditions for ethyl phosphate esters, namely iodotrimethylsilane and N,O-bis(trimethysilyl) acetamide, ¹³ led to the oxazole 12 in 51% isolated yield. To avoid this intramolecular cyclization and dehydration of the acetamide moiety, the N-acetyl group would need to be introduced after phosphonate ester hydrolysis. This was achieved by first coupling N-Boc acid 8 with 7 (EDCI/HOBT) to give 13 in 85% yield. Treatment of 13 with bromotrimethylsilane in acetonitrile and subsequently aqueous acetone resulted in isopropyl ester hydrolysis and Boc removal. Acetylation of the zwitterionic intermediate 14 with Ac₂O gave the desired target compound 15 as a single isomer as determined by ¹H and ¹³C NMR analysis. ¹⁴

The corresponding phosphate 16 (reported 12 to block the association of PDGF- β receptor with p85 C-SH2; IC₅₀ = 0.077 μ M) was also assembled for comparative biochemical evaluation. BIAcore analysis of 15 showed 50% inhibition of binding of the p85 N-terminal SH2 domain to a CD19 phosphopeptide at 50 μ M.

By comparison, the canonical phosphopeptide 16 exhibited 98% inhibition at 20 μ M. This result indicates a moderate effect by the pyridone heterocyclic on phosphonate pK_{A2}. Moreover, the Arg α A2-aromatic (π -cation) interaction may be compromised in the pyridone case. We are continuing our studies with other SH2 domains in order to determine the potential utility of the pyridone phosphonate as a pTyr mimetic.

Scheme 2. (i) (a) K_2CO_3 , CH_3CN , $BrCH_2P(O)(O^iPr)_2$, reflux, 48 h, 98%; (b) $H_2/Pd/C$, MeOH, rt, 2h, 96%; (c) Et_3N , $(CF_3SO_2)_2O$, CH_2Cl_2 , -78 °C, 5 min, 70% (ii) Zn dust, $Pd_2(dba)_3/o$ -to l_3P/THF -DMA, 55 °C, 43% (iii) H_2 , Pd/C, MeOH, rt, 14 h, 99% (iv) (a) TFA, CH_2Cl_2 , rt, 5 min; (b) Ac_2O , NMM, CH_2Cl_2 , 0 °C to rt, 76% for two steps; (v) H_2 , $Pd(OH)_2$, EtOAc, 94% (vi) 7, EDCI/HOBT, DDMF, 0 °C to rt, 85% (vii) TMSI, $RACH_2Cl_2$, $RACH_2Cl_2$, RA

Acknowledgements: We are indebted to Dr. John Cambier and Sara Johnson, National Jewish Medical and Research Center, Denver, CO for the BIAcore analysis and to Dr. Chris Pleiman for preliminary studies.

References and Notes

- 1. Plummer, M. S.; Lunney, E. A.; Para, S. K.; Vara Prasad, J. V. N.; Shahripour, A.; Singh, C. J. S.; Humblet, C.; Fergus, J. H.; Marks, J. S.; Sawyer, T. K. Drug Design and Discovery 1996, 13, 75.
- 2. Cambier, J. C.; Pleiman, C. M.; Clark, M. R. Annu. Rev. Immunol. 1994, 12, 457.
- Kimura, T.; Kihara, H.; Bhattacharyya, S.; Sakamoto, H.; Appella, E.; Siraganian, R. P. J. Biol. Chem. 1996, 271, 27962.
- 4. Plummer, M. S.; Holland, D. R.; Shahripour, A.; Lunney, E. A.; Fergus, J. H.; Marks, J. S.; McConnell, B.; Mueller, W. T.; Sawyer, T. K. J. Med. Chem. 1997, 40, 3719.
- (a) Domchek, S. M.; Auger, K. R.; Chatterjee, S.; Burke, Jr., T. R.; Shoelson, S. E.; Biochemistry, 1992, 31, 9865. (b) Wange, R. L.; Isakov, N.; Burke, Jr., T. R.; Otaka, A.; Roller, P. P.; Watts, J. D.; Aebersold, R.; Samelson, L. E. J. Biol. Chem. 1995, 270, 944. (c) Wange, R. L.; Isakov, N.; Burke, Jr., T. R.; Otaka, A.; Roller, P. P.; Watts, J. D.; Aebersold, R.; Samelson, L. E. J. Biol. Chem. 1995, 270, 944. (d) Plummer, M. S.; Lunney, E. A.; Para, K. S.; Shahripour, A.; Stankovic, C. J.; Humblet, C.; Fergus, J. H.; Saltiel, A.; Sawyer, T. K. Bioorg. Med. Chem. 1997, 5, 41. (e) Furet, P.; Gay, B.; G-Echeverria, C.; Rahuel, J.; Fretz, H.; Schoepfer, J.; Caravatti, G. J. Med. Chem. 1997, 40, 3551. (f) Revesz, L.; Blum, E.; Manning, U.; Demange, B. J.; Widmer, A.; Zuber, J.-F. Bioorg. Med. Chem. Lett. 1997, 7, 2875.
- (a) Burke, Jr., T. R.; Smyth, M. S.; Otaka, A.; Nomizu, M.; Roller, P. P.; Wolf, G.; Case, R.; Shoelson, S. E. Biochemistry 1994, 33, 6490. (b) Burke, Jr., Smyth, M. S.; Otaka, A.; Roller, P. P. Tetrahedron Lett. 1993, 34, 4125. (c) Liu, W.-Q.; Roques, B. P.; Garbay C. Tetrahedron Lett. 1997, 38, 1389. The high affinity of peptides bearing >CF₂PO₃H₂ has also been attributed to a direct interaction of the fluorines with active site residues and not to lower pKa values, see: Chen, L.; Wu, L.; Otaka, A.; Smith, M. S.; Roller, P. R.; Burke, T. R.; den Hertog, J.; Zhang, Z-Y. Biochem. Biophys. Res. Comm. 1995, 216, 976.
- 7. The pK_{A2} of NH₂CH₂PO₃H₂ is 5.9. Pyridone-CH₂PO₃H₂ and Pmp pK_{A2} were subsequently calculated as 7.1 and 7.7 ± 0.3 , respectively, using Advanced Chemistry Development, Inc., prediction software.
- 8. (a) Waksman, G.; Shoelson, S. E.; Pant, N.; Cowburn, D.; Kuriyan, J. Cell 1993, 72, 779. (b) Eck, M. J.; Shoelson, S. E.; Harrison, S. C. Nature 1993, 362, 87.
- 9. Kelly, T. R.; Bridger, G. J.; Zhao, C. J. Am. Chem. Soc. 1990, 112, 8024.
- 10. A similar approach to the synthesis of 4-phosphono(difluoromethyl)-L-phenylalanine and pyridylalanine regioisomers starting from 2-, 3- and 4-bromopyridine and β-iodoalanine have been described, see: (a) Smyth, M. S.; Burke, Jr., T. R. *Tetrahedron Lett.* **1994**, *35*, 551 (b) Walker, M. A.; Kaplita, K. P.; Chen, T.; King, H. D. *Synlett* **1997**, 169.
- 11. Jung, M. E.; Starkey, L. S. Tetrahedron, 1995, 53, 8815.
- 12. Eaton, S. R.; Cody, W. L.; Kent, D. R.; Paneck, R. L.; Lu, G. H.; Dahring, T. K.; Doherty, A. M. "Peptidomimetic inhibitors of the association of platelet derived growth factor-β receptor with phosphatidylinositiol 3-kinase", 25th National Medicinal Chemistry Symposium, Ann Arbor Michigan, June 18-22.
- 13. Szardenings, A. K.; Gordeev, M. F.; Patel, D. V. Tetrahedron Lett. 1996, 37, 3635.
- 14. Compound **8:** Oil; ${}^{1}H$ NMR (200 MHz, CDCl₃) δ 1.21 (s, 3H), 1.24 (s, 3H), 1.28 (s, 3H), 1.31 (s, 3H), 1.43 (s, 9H), 2.94–3.02 (m, 2H), 4.28–4.75 (m, 5H), 5.40 (br, 1H), 6.26–6.29 (d, J = 6.6 Hz, 1H), 6.56 (s, 1H), 7.43–7.46 (d, J = 6.6 Hz, ArH). MS (ES): 461 (M⁺ + 1), 405 (M⁺- C(CH₃)₃). Compound **13:** ${}^{1}H$ NMR (200 MHz, CDCl₃) δ 0.84–0.95 (m, 12H), 1.17–1.55 (m, 32H), 2.01–2.13 (m, 2H), 2.74–3.29 (m, 6H), 3.37–3.52 (m, 2H), 4.28–4.41 (m, 4H), 4.57–4.85 (m, 4H), 5.46–5.50 (d, J = 8 Hz, 1H), 6.13–6.17 (d, J = 8 Hz, 1H), 6.43 (s, 1H), 6.92–6.96 (d, J = 8Hz, 1H), 7.19–7.23 (d, J = 8 Hz, 1H), 7.38–7.42 (d, J = 8 Hz, 1H). MS (ES): 742.0 (M⁺+1). Compound **15:** MS (ES): 600.3 (M⁺ + 1).